جزوه زبان تخصصی رشته ریاضی کاربردی

جزوه زبان تخصصی رشته ریاضی کاربردی

این جزوه آموزشی جز مجموعه جزوات خلاصه منابع رشته ریاضی کاربردی است که همراه با مجموعه تست در هر فصل با پاسخنامه تست ارائه شده است،در قالب pdf و در 94 صفحه.

مشخصات فایل

تعداد صفحات 94
حجم 3078 کیلوبایت
فرمت فایل اصلی pdf
دسته بندی جزوه

توضیحات کامل

فهرست مطالب :


 اصطلاحات
Function and Limit:Season 1
تست های فصل اول 
پاسخ تست های فصل اول Existence of Derivatives:Season 2
تست های فصل دوم
پاسخ تست های فصل دوم 
تست های فصل سوم 
پاسخ تست های فصل سوم 
تستهای فصل چهارم
پاسخ تست های فصل چهارم 
تست های فصل پنجم 
پاسخ تست های فصل پنجم Binary Relations:Season 6
تست های فصل ششم 
پاسخ های تست فصل ششم Countability:Season 7
تست های فصل هفتم 
پاسخ تست های فصل هفتم 
تست های فصل هشتم 
پاسخ تست های فصل هشتم 
تست های فصل نهم 
پاسخ تست های فصل نهم 
تست های فصل دهم 
پاسخ تست های فصل دهم 
تست های فصل یازدهم 
پاسخ تست های فصل یازدهم 
تستهای فصل دوازدهم 
پاسخ تستهای فصل دوازدهم
تستهای فصل سیزدهم 
پاسخ تستهای فصل سیزدهم 
تستهای فصل چهاردهم
پاسخ تستهای فصل چهاردهم 
مجموعه تست
پاسخنامه تستهای پیشنهادی 
مجموعه تست
پاسخنامه 

قسمتی از متن جزوه:


  Season 1:Function and Limit 
An equation of the form y=f(x) is said to define y explicitly as a function of x (the function being f), and an equation of the form x=g(y) is said to define x explicitly as a function of y (the function being g). For example, y=5x2sin x explicitly as a function of xand x=(7y3-2y)2/3 defines x explicitly as a function of y. An equation the is not of the form y=f(x) but whose graph in the xy-plane passes the vertical line test is said to x, and an equation that is not of the form x=g(y) but whose graph in the xy-plane passes the horizontal line test is said to define x implicitly as a function of y.In the preceding sections we treated limits informally, interpreting ®axlim f(x)=L to mean that the values of f(x) approaches L as x approaches a from either side(but remains  different from a).

However, the phrases 'f(x) approaches L' and 'x approaches a' are  
  intuitive ideas without precise mathematical definitions. This means that if we pick anypositive number, say e , and construct an open interval on they y-axis that extends eThen is deducing these limits results from the fact that for each of them the numerator  and denominator both approach zero as h ® 0. As a result, there are two conflicting  
influences on the ratio. The numerator approaching 0 drives the magnitude of the ratio  
toward zero, while the denominator approaching 0 drives the magnitudeof the ratio  
toward + ¥ . The precise way in which these influences offset on anotherdetermines  
   whether the limit exists and what its value isIn a limit problem where the numerator and denominator both approach zero, it is  
sometimes possible to circumvent the difficulty by using algebraicmanipulations to write  the limit in a different from. However, if that is not possible, as here, other methods are  required. One such method is to obtain the limit by 'squeezing' the function between  
simpler functions whose limits are known. For example, suppose that we are unable to  show that  ®ax lim f(x)=L directly, but we are able to findtwo functions, g and h, that have  
same limit L as x®a and such that f is 'squeezing' between g and h bymeans of the  inequalities g(x) £f(x) £h(x) it is evident geometrically that f(x) must also approach L as  
x®a because the graph of f lies between the graphs of g and h.  
This idea is formalized in the following theorem, which is called the Squeezing Theorem 
or sometimes the Pinching Theorem

تست های فصل اول  

1) If the domain of a real-valued, continuous function is connected, then the range is 
a. An interval of R it self               b. An open set  
c. A compact set-          d. A bounded set  

2) A function : ® RAf is said to ……….on A if there exists a constant M > 0 such  that )( £ Mxf for all Î Ax . 
a. be closed            b. be bounded  
c. have extremum     d. have maximum  

3) A set Í RU is said to be open if for each ÎUx there is ….number a e such that  -e + e ),( ÍUxx . 
a. A positive real       b. a non-zero real  
c. complex         d. a negative set  

5) “A function : Rf ®is continuous at a point 0 x in R if given e > 0 , there is a  d > 0such that for all x in R with <- d 0 xx we have <- e 0 
xfxf )()( which of the  
following statements is true in general? 
a. e is a small number      b. d is a small number  
c. d is a function, of 0 
x and e d. d is unique  

6) A function is a special case of a……… . 
a. derivative b. equality c. polynomial d. relation 
    
7) A function f is said to be even if it is defined on a set symmetric with respect to  
the ……and if it is possesses the property – = xfxf )()( . 
a. origin        b. x-axis       c. y-axis     d. open  

8) For any real number x . The …..value of x , denoted by x . 
a. absorbency b. absorption c. abstraction d. absolute  

9) For a real function f, the …..of f is the set of all pairs yx ),( in R´ R such that  = xfy )( and x is in the domain of the function. 
a. curve              b. graph                c. greatest             d. divisor  

10. The graph = xgy )( is an odd function has the ….as a line symmetry. 
a. y-axis b. origin c. y=x d. x-axis  

 

  
پاسخ تست های فصل اول   
و….

 


توضیحات بیشتر و دانلود



صدور پیش فاکتور، پرداخت آنلاین و دانلود